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Heat shield design for re-entry and launch.
The use of conduction-assisted radiation

on sharp-edged wings
By Terence R. F. Nonweiler

Victoria University, Wellington, New Zealand and
APECS Ltd, 3 Hawkley Hurst, Hawkley, Hants GU33 6NS, UK

The conduction of heat within the material of a wing leading edge can be treated
both simply and (usually) accurately by ‘conducting-plate theory’. The theory leads
to a concise ‘reference solution’ for the variation of temperature over a solid wedge-
shaped nose that is heated by a boundary layer. This indicates the best choice of
material, and we look at ways a given mass of the material may best be installed
to reduce the nose temperature, without sacrificing the benefits that a sharp-nosed
wing may have to offer.
It is shown that although these materials may be dense, a heavy mass is not

required to achieve acceptable temperatures at the edge in hypersonic flight. Some-
thing perhaps between 5 and 10 kg per metre of edge (or say 3–7 lb ft−1) is usually
enough. However, the nose temperature depends on sweepback and surface pressure.
To avoid temperatures of 1600 K or more at a highly swept sharp edge in hypersonic
flight, it is necessary that neither the wing loading nor the surface pressure exceeds
more than 2 kPa (40 lbf ft−2). We cite values of less than this that relate to the design
of a re-entry vehicle with a wing loading of only 680 Pa (141

4 lbf ft
−2).

However, rounding the nose (with a radius usually of just a few millimetres) can
provide reductions of up to perhaps 20% in the nose temperature. This allows this
form of temperature control to be extended to wings of higher loading and to regions
of lower sweep, including at or near the wing apex where the heating rates are most
intense.

Keywords: re-entry heating; leading edge design; conduction-assisted cooling;
conducting-plate theory; sharp-edge temperature; effect of rounding

1. Introduction

It is usually accepted without question that aircraft intended for hypersonic flight
must have rounded leading edges. This is, of course, to avoid the high temperatures
that would otherwise exist at those edges using conventional thermal protection
systems. The physical principle and the technology involved are well known. Rounded
leading edges spread out the peak in boundary-layer heat transfer at the nose. In
protracted flight, this allows the heat to be radiated away over a larger surface area
at lower temperature. A layer of insulation limits the heat transmitted to the interior
structure.
However, if a high lift-to-drag ratio is sought, or if the boundary-layer transition

is to be delayed, then the need for rounded edges will limit what could otherwise be
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achieved. That limit will also be present more generally, whenever an extended flight
at hypersonic speeds is envisaged; for example, in seeking to extend cruise range, or
the crossrange in lifting re-entry. In such a context, there is a possible remedy. The
high peak heat transfer from the boundary layer over a sharp nose can be spread
out downstream by thermal conduction within the nose material. In principle, it can
then be radiated away at an acceptably low material temperature. Further, if that
material is insulated downstream, the heat transmitted to the rest of the structure
can likewise be limited.
This is the principle of conduction-assisted radiative cooling. The physics involved

would not be disputed, and neither would the benefits that can be derived from the
use of ‘sharp edges’ (not, let it be noted, necessarily razor sharp). Nonetheless, it
would be fair to say that the idea is often dismissed as unrealistic. There are good
reasons for this, in at least some contexts.

(1) The idea is only applicable if the surface pressure (and so the heat transfer)
is low. In practical terms, this translates into upper limits on wing loading
and dynamic pressure. This may well rule out certain applications: where, for
example, a high dynamic pressure is judged essential (for effective air-breathing
propulsion during launch, say).

(2) It is difficult to predict the temperature likely to be reached at a sharp edge.
Frequently, reviews of the subject ignore the principle altogether, presumably
for this reason. The ability to compute an answer easily has a large bearing
on how acceptable any method of solving a problem may be. By comparison,
working out the leading edge temperature on round-nosed wings is relatively
straightforward.

(3) Suitable nose materials need to be selected from graphite and various (non-
alloyed) metals with a high melting point, such as niobium (i.e. columbium),
molybdenum or tungsten. The use of such metals is often regarded as implying
a ‘heavy’ structure, but this is not so, as the relevant question concerns what
effect a certain limited mass of material may have. However, the surfaces of
these materials, when heated to high temperature, react with the air, although
neither the rate nor the extent of the reaction is well established. Some form
of surface protection may well be essential.

This last-mentioned possibility was closely studied in the 1960s and 1970s. To
mention just one of the materials considered, a columbium alloy was found to accept
a protective coating that allowed it to be reliably used at temperatures of up to
1800 K. It could also, to some extent, be re-used, subject to eventual problems with
creep deformation. Even with the coating removed from small areas, the material was
judged likely to survive several re-entries before any hole in the skin would develop,
and many more before the panel would fail.
It remains an open question as to whether any such coating is effective on the

almost-pure metals that we are interested in here. However, even if not, it is possible
that in some applications (such as the re-entry vehicle to be cited in what follows),
the leading edge protection could be routinely replaced. One advantage of metals,
after all, is that they can be recycled. If the worst comes to the worst, all that is then
required is that the material survives the oxidation and erosion of a single mission,
whatever that might be.
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In reflecting on this area of uncertainty, it will be recognized that the solution of
many technological problems is driven by demand. These problems are only overcome
when the benefit of doing so is clearly set out. This then is our purpose in what
follows. To this end, we must address the other two problems mentioned above,
which are clearly related to each other. It seems sensible to look first at methods of
calculation before discussing what they reveal.

2. Methods of calculation

Conductivity usually affects such a narrow region close to the leading edge of a wing
that it is adequate to treat the temperature distribution as locally two dimensional.
This clearly simplifies the solution of the heat-conduction equation. However, there
remain some difficulties. Firstly, the need to include the effect of surface radiation
makes the equations nonlinear. Secondly, if (as we are to assume) the nose is sharp,
the heat transfer has (in theory) a half-order singularity at the edge. Even if the
edge is rounded, the heat transfer will vary rapidly over the (small) nose radius.
Hence, the computational grid must be particularly closely spaced near the nose.
The grid may also be complicated by the need to represent the internal structure
of the nose and the different materials of which it may be made. Finally, the equa-
tion must be iterated with a solution of the laminar boundary-layer equations. The
latter must provide a measure of the surface heat transfer appropriate to the most
recently updated estimate of surface temperature. This may require real-gas effects
and viscous interaction to be taken into account.
The heat-conduction equation has, itself, to be solved iteratively of course. Thus,

the process can be arranged as a boundary-layer solution followed by, say, N iter-
ations of the conduction equation. This would be repeated until convergence is
achieved. At least at high Mach numbers, where heat transfer is not greatly affected
by the likely range of surface temperature, N can be quite large, and convergence is
relatively rapid.
Clearly, it takes some effort to set up such a computation, and each new application

usually requires some reprogramming. In any general survey or project analysis, this
is daunting enough to encourage one to look for a simpler approach. If nothing
else, this can at least provide a close starting solution for the full calculation in
chosen cases. Such an approximation, called conducting-plate theory, was proposed
by the author over 40 years ago (Nonweiler 1952, 1956) and verified some years later
by experiment (Nonweiler et al . 1971). Since then, its accuracy has been broadly
confirmed in a large number of relevant examples by using the unsimplified approach.

(a) Conducting-plate theory

The basic assumption of this theory is that the two-dimensional domain affected
by heat conduction is sufficiently thin that the temperature change across the region
can be ignored compared with that along it. We can express this another way by
regarding the thickness of the region as becoming infinitesimal, so that in the limit
it shrinks to a plate, whence the name of the theory. The two-dimensional tem-
perature distribution, varying along and across the domain, becomes replaced by
a one-dimensional variation, in effect along the surface. However, clearly more than
just shape is involved for this to be true. For instance, the leading edge of a wing may
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Figure 1. Difference in estimates of non-dimensional temperature: ∆τ = ∆T/Θ = [T2(r, θ) −
T1(r)]/Θ for symmetrical wedge sectors of 30◦ and 45◦ semi-angle and non-dimensional radial
length L/Λ = 1.

be shaped as a thin wedge, but if it is filled with insulation and heated on only one
side, that side will get hot while the other side will remain cool, violating the basic
assumption about the temperature distribution. As with many approximations, the
theory must be applied with discrimination. Yet it can also be more accurate than
one might expect.
The simplest and most striking example of this is provided by a wedge sector,

constructed of material of constant conductivity and insulated at its downstream end.
We suppose that its top and bottom surfaces, which are cooled by surface radiation
with constant emissivity, are subjected symmetrically to the same heat input, varying
as 1/

√
r, where r is the distance from the nose. Figure 1 shows the difference in the

temperature between that calculated by the unsimplified two-dimensional solution
(T2), and that determined by conducting-plate theory (T1), for just the top half of
the wedge. This difference is quoted as a fraction of Θ, and, for present purposes,
all that we need to know is that Θ is equal to about T0/1.7, where T0 is the value
of T1 at the edge. Thus, if Θ were as high as, say, 1000 K (1800 ◦R), then the edge
temperature would be 1700 K (3060 ◦R). Even in that extreme, the approximate
temperature is too small by little more than 30 K (54 ◦R) or less than 2% of the nose
temperature. On the wedge surface, it is too small near the nose by less than a tenth
of this, and too large further downstream by just 10 K (18 ◦R). This, let it be noted,
is for a wedge of 45◦ semi-angle, which would hardly be described as ‘thin’. For a
wedge of 30◦ semi-angle, the temperature differences are roughly halved. The error
is closely proportional to the square of the angle.
It has to be admitted that this kind of agreement is, to some extent, fortuitous.

There is a good reason why (for instance) one might have included tan δ in place of δ
in the approximate treatment. Had this been done, the values of T1 for δ = 45◦ would
all have been 5% lower. Yet this difference is not theoretically significant, because
it is of second order in δ, and, indeed, it is only numerically significant because we
have chosen so large a value of δ. Had we not calculated the error, we would not, of
course, know whether δ or tan δ would provide the more accurate answer. However,
we can discern that using δ instead of tan δ provides a larger estimate of T1, and this
might be a prudent reason for preferring it.
This kind of ambiguity is inevitable, of course, in any first-order approximation.

On the other hand, as we shall show, the compensating advantage is that T1/Θ is
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independent of δ. Thus, the variation of T1 with δ becomes embodied in the definition
of the reference temperature, Θ.
Thus, not merely the working, but the presentation, of results is greatly simplified,

and we have, therefore, used the theory to derive the data that follow. As in the above
example, the author is confident that any error in predicting temperature should
be ‘small’, even if the shape is not particularly ‘thin’. The form of the (ordinary)
differential equation in accordance with the theory will be found in the appendix,
where we also suggest how it may best be solved.

3. The ‘reference’ result

It is our intention to show the extent to which conductivity can limit the tempera-
ture of a wing leading edge, and the ways in which the conducting material is best
employed. In view of the number of variables involved, a convenient way of doing this
is by quoting a basic, or what we call a reference, result, and expressing all others
by the factor that must be applied to it. The convenience arises from the fact that
this factor is never greatly different from unity.
In this sense, the reference result is also a representative or typical one. However,

that remains to be shown. The basic assumptions are, perhaps, too simple and too
crude for this to be immediately obvious.
The result we choose is a generalization of that already described in the previous

section. We suppose that a wedge of small semi-angle δ is constructed of material of
constant conductivity k, but is insulated at its downstream end at a distance r = L
from the nose. We assume that the total rate of heat transfer from the boundary
layer to both its surfaces within a distance r of the nose is equal to 2H

√
r, where

H is a constant. We suppose further that the surface emissivities are constant and
that their sum is equal to Σ. Notice that neither the heat transfer nor the emissivity
need be the same on the top and bottom surfaces. Moreover, because δ is small (or,
more strictly, infinitesimal), the wedge can be regarded as a triangle rather than a
sector, and the radial length r does not differ significantly from the distance x along
the wedge centreline, which is the measure we shall prefer to use in what follows.
Then, according to conducting-plate theory, in the limit for δ → 0, the temperature
T of the wedge is given by

T/Θ = f(L/Λ, x/Λ), (3.1)

where the reference temperature Θ and the conduction length Λ are defined, respec-
tively, by

Θ =
[

H2

Σσkδ

]1/5

and Λ =
[
(kδ)4

ΣσH3

]2/5

. (3.2)

Here, σ is the Stefan–Boltzmann constant, 5.6697 × 10−8 Wm−2 K−4 (1.7121 ×
10−9 Btu h−1 ft−2 ◦R−4). Other than in the association of Σ with σ, and of k with
δ, these relations (3.1) and (3.2) can be found from the principle of dimensional
homogeneity. The form of the function f(. . . ) in (3.1) is determined by the solution
of a (nonlinear) ordinary differential equation, given in the appendix.
There are, of course, other ways in which (3.1) might be expressed, and a number of

other possible groupings of the variables that might have been taken as a ‘reference’
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Figure 2. Variation of nose and downstream edge temperatures T0 and TL and of radiation
equilibrium temperatures EL/4 and EL on a wedge as a function of its length L in the reference
solution.

temperature. In particular, the radiation equilibrium temperature at a distance r
from the nose is

Er = [H/(Σσ
√
r)]1/4. (3.3)

It can be readily shown that

Θ = EΛ = (L/Λ)1/8EL, (3.4)

so that, in physical terms, Θ is the radiation equilibrium temperature at a distance
Λ from the nose.
For present purposes, the reason for using Θ is that, like Λ, being independent

of L, the non-dimensional quotient T/Θ can be plotted, as in figures 2 and 3, to
reveal directly how temperature varies with L and x. Thus, it will be clear from
figure 2 that there is little reduction in the nose temperature T0 to be achieved
by increasing the length of the wedge beyond Λ. For lengths much less than about
0.01Λ, the temperature over the whole wedge is nearly constant and equal in the
limit to 21/4EL = 1.189EL = EL/4. This limit is the constant temperature solution
for ‘infinite conductivity’ (that is, for kδ → ∞). In this, as indeed in all solutions,
the heat radiated from the wedge exactly balances that input, because we assume
there to be no loss of heat from the downstream end. As the length of the wedge is
increased, figure 2 also shows that the temperature TL at the downstream end of the
conducting region tends towards the radiation equilibrium temperature EL immedi-
ately downstream. There is, consequently, a smaller temperature change across the
layer of insulation we assume to be inserted at that end.
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Figure 5. Another presentation of the results for the reference solution to show
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On the other hand, if (for instance) we plot T/EL against Λ/L, as in figure 4,
then, because EL is independent of conductivity, this reveals more clearly how the
temperature is affected by kδ, since, from (3.2), the latter is proportional to (Λ/L)5/8.
Yet another approach is to plot

T

/[
kδ

ΣσL

]1/3

=
(
T

Θ

)(
L

Λ

)1/3

against L/Λ, as in figure 5. This exhibits best how T increases with H, which is
proportional to (L/Λ)5/6. Informative as these representations may be, they all of
course convey precisely the same result. In what follows, we shall find it convenient
for the most part to use T/Θ as a measure of non-dimensional temperature.
We question first of all whether the reference solution adequately represents the

effect of aerodynamic heating at hypersonic speeds. By considering (in § 3 b) what
conducting materials may best be used, we are led to some idea of the heating intensi-
ties that they can sustain. Reference to laminar boundary-layer rates of heat transfer
(in § 3 c) then suggests the relatively low wing loading and the high sweepback that
seem, at least at first sight, to be implied by these intensities.

(a) Representation of boundary-layer heat input

If it is intended to represent the effect of heat input from a laminar boundary layer,
perhaps the least realistic assumption of the reference solution is that the total heat
input to the wedge is proportional to

√
x. One’s first doubt would arise about the

reality of the half-order singularity at the nose. This could only exist (in theory) if
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the surface were flat and at constant pressure, whereas in practice the nose would,
at least to some extent, be rounded. However, this fact leads to complications, and
it will be more convenient to come back to unravel these later. For the time being,
we shall accept that the wedge surface can be treated as if it were in fact at constant
pressure.
Even so, if the heat input H

√
x is supposed to be derived from a boundary layer,

then H will not be a constant (as has been assumed). It will increase downstream,
where the surface temperature of the wedge is less. Similarly, H at x = 0 will vary
with nose temperature T0. The latter dependence has by far the greater effect on
T0 itself, and, fortunately, it can be taken into account in the reference solution.
It simply means that placing T = T0 in (3.1) provides an implicit, rather than an
explicit, expression for T0, and consequently for H. The fact that conductivity also
varies (usually only gradually) with temperature, causes a similar difficulty. Most of
the error from this source can likewise be avoided by taking k as dependent just on
T0.
Near to the leading edge, the value of H decreases with T0 closely in proportion to

(1− h0/hrec)/(1+ h0/hc). Here, h0 is the air enthalpy at the surface at temperature
T0 at the nose, hrec is that at the recovery temperature, and hc is a constant enthalpy
of ca. 55 km2 s−2 (6×108 ft2 s−2 or 24 000 Btu lb−1). Clearly, for any realistic surface
temperature, the variation of H is quite small at hypersonic speeds.

(b) The selection of conducting material

As will be shown, the triangular slab assumed in the reference solution does not
make the best use of the conducting material. Nonetheless, this solution is realistic
enough to guide us to the best choice of conducting materials. It can also provide at
least an underestimate of the level of heat input H that they must sustain. For this
purpose, we need to make a few extra assumptions.

(i) We shall take the sum of the surface emissivities Σ as 1.7, and δ to be 20◦.
This latter angle is possibly large, but we have in mind the leading edge of a
highly swept wing, and the semi-wedge angle in the streamwise direction would
be smaller, perhaps just 5◦.

(ii) We shall suppose that the mass m of the conducting material per unit length
along the wing leading edge is fixed. The length of the wedge of material is then
L =

√
(m/ρδ), where its density is ρ = 1000sg kg m−3, and sg is its specific

gravity. An acceptable value of m will depend on the size of the aircraft. In
the recent design (Nonweiler, this issue, SLEEC22) of a small re-entry vehicle
of 4.4 m (141

2 ft) span, m was limited to 10 kg m−1 (6.7 lb ft−1), but values of
up to perhaps 30 kg m−1 (20 lb ft−1) might be acceptable on larger vehicles, if
this proved a benefit.

(iii) We shall take both T0 and H to be given as parameters, and plot the values
of sg and the conductivity k that are thereby implied, as in figure 6a–d. For
this purpose, we need yet another representation of the reference solution, in
which (in effect) we plot(

T0

Θ

)5

=
kΣσT 5

0 δ

H2 against
(

T0

EL

)−16

=
(
ρδ

m

)[
H

ΣσT 4
0

]4

.
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Figure 6. Effect of material conductivity, density and mass per unit length on the heat transfer
intensity H that corresponds in the reference solution in (a) and (b) to a nose temperature
T0 = 1600 K, and in (c) and (d) to a nose temperature T0 = 1200 K. (The symbol C refers to
carbon in the form of graphite.)

Figure 6 also shows the values of k and sg (at the temperature T0) for most of
the elements that have melting points higher than T0. Many of these materials will
be best known for their use in alloys. However, in general, alloys have much lower
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conductivities than does each of their ingredients, although one form of chromium
steel has physical properties like those of iron.
Looking first at figure 6a, we see that with m = 30 kg m−1 (20 lb ft−1) and

T0 = 1600 K (2880 ◦R) the ‘best’ materials, in the sense that they sustain the highest
heating intensity H, are palladium and rhodium. Unfortunately, along with ruthe-
nium, iridium and platinum that also show up well on this basis, they would be too
rare and costly to be used. The choice, therefore, turns to molybdenum, tungsten,
nickel and niobium. Nickel has the lowest melting point of these and is probably only
usable (if at all) at a somewhat lower temperature than 1600 K.
It is clear from figure 6b that the reduction of the mass of the conducting material

by a third to m = 10 kg m−1 (6.7 lb ft−1) has no effect on the ‘ranking’ of materials,
and little effect on the heat intensity H that can be sustained. Indeed, H is reduced
by only ca. 7% for the materials of highest conductivity, and less still for those with
smaller k. If H remained fixed, and T0 were varied, then this 7% change in H would
translate to a mere 3% reduction in nose temperature. A threefold increase in the
mass of the conducting material would seem an extravagant penalty to pay for so
small an effect. The converse of this observation is no less important. Reducing the
mass by a third (to, say, 3 kg m−1) would imply only a similarly small increase in T0
(for fixed H). However, one way or the other, the significance of such a measure can
only really be judged by reference to its context.
This variation (of H with m) arises because, in all of the conditions shown in

figure 6a, b, the values of L/Λ are in the range approaching unity, where, as shown
in figure 2, T0/Θ becomes almost independent of length. Because T0 is fixed, Θ is
nearly constant and H becomes roughly proportional to

√
k, but insensitive to sg

(and so to L and m).†
Turning next to figure 6d, for which m remains at m = 10 kg m−1 (6.7 lb ft−1),

but T0 is now reduced to 1200 K (2160 ◦R), we see that copper, beryllium and (to a
lesser extent) graphite enter into contention as preferred materials (gold and silver
being obviously out of the question). Moreover, the relative importance of density at
the higher values of H and k, as judged from the steepness of the curves, suggests
that the extent of the surface is, here, more important, because L is much smaller
than Λ. Indeed, as we see from figure 6c, an increase of m to 30 kg m−1 is now more
effective, because it allows copper to sustain a heating intensity 22% higher without
an increase in nose temperature.‡
To sum up, while it is not suggested that a nose temperature of 1600 K (2880 ◦R)

is the highest that might be tolerated, we can, for present purposes, regard a heat
intensity H of ca. 40 kWm−3/2 (23 000 Btu h−1 ft−3/2 or 5000 lbf s−1 ft−1/2) as rep-
resenting a ‘high’ heat input. We regard a figure of half this as a ‘moderate’ value for
which copper might be the obvious conducting material to use. In any application,
it would of course be the peak heating intensity that would determine the choice of
material.

† As indeed is clear from the figures. For instance, figure 6b indicates that niobium can sustain a heat
input of H = 39 W m−3/2 and with k = 74 W m−1 K−1, equations (3.2) imply values of Λ = 36 cm
(14 in) and Θ = 906 K (1630 ◦R), so that T0/Θ = 1.77. However, since sg = 8.3, the value of L that
corresponds to a mass of 10 kg m−1 (6.7 lb ft−1) is 59 mm (2.3 in) so that L/Λ ≈ 0.16, which is shown
in figure 1 to be consistent with the value of T0/Θ.

‡ For this increased H (of 26.3 kW m−3/2), the values of Θ and Λ are 568 K (1020 ◦R) and 7 m
(23 ft), respectively. As the length of the copper wedge for a mass of m = 30 kg m−1 is 10 cm (4 in), the
corresponding figures for T0/Θ and L/Λ are 2.11 and 0.014, respectively.
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(c) Interpreting the value of H

Perhaps the relation (3.3) for Er provides the easiest way of interpreting the
value of H. What we have termed ‘high’ and ‘moderate’ heat intensities of 40 and
20 kWm−3/2 correspond to radiation equilibrium temperatures of 800 K and 675 K
at a distance of 1 m perpendicularly from the edge of the swept wing (or 1700 ◦R
and 1400 ◦R at 1 ft from the edge). This assumes that Σ = 1.7, which is the figure
used in deriving the results of figure 6.
With the leading edge being swept back (by an angle φ, say), it would be more

usual to base the radiation equilibrium temperature E on the distance downstream
from the edge in the streamwise direction. This relates E to a point nearer the edge
and increases it by a factor of roughly sec1/8 φ. For instance, with φ = 75◦, the
radiation equilibrium values E for ‘high’ and ‘moderate’ heat intensities would then
be roughly 950 K and 850 K at 1 m from the edge in the streamwise direction (or
2000 ◦R and 1800 ◦R at 1 ft streamwise from the edge).
Likewise, it would be more usual to refer the heat intensity to a value (Hs say)

based on the streamwise distance s from the edge. Then the total heat input to
the surface over that distance s is 2Hs

√
s. Since the distance normal to the edge is

x ∼= s cosφ, it follows that

Hs = H
√
secφ. (3.5)

Thus, the values of Hs would be almost double those for H if φ were equal to 75◦.
A survey (Nonweiler 1990) of the results for the rate of heat transfer Q from

a laminar boundary layer over a (cold) surface at constant pressure pe, yields the
approximation

Q
√
s = (V∞/Vc)2.16

√
CpeUe/V∞, (3.6)

where Ue is the flow velocity over the surface, V∞ is the free-stream speed, Vc is
the sea-level circling velocity of 7.87 km s−1 (25 800 ft s−1), and C = 77 MW s−1

(57× 106 ft lbf s−2). Evidently,

Hs = (Qt +Qb)
√
s, (3.7)

where Qt and Qb are the values of Q for the top and bottom surfaces, respectively.
Assuming these were the same, then at a speed of V = 3 km s−1 (or 104 ft s−1), a
value of Hs of 80 kWm−3/2 would correspond to a surface pressure of somewhat
more than 1.4 kPa (29 lbf ft−2).
Broadly speaking, as the speed increases, the surface pressure is likely to drop in

rough proportion to 1− (V∞/Vc)2. Equation (3.5) then shows that Q is a maximum
at V∞/Vc = 0.83. In this extreme condition, it is likely that the heat input to the
top surface would be relatively small. Thus, a value of Hs = 80 kWm−3/2 would
correspond to a value of pb/[1 − (V∞/Vc)2] in excess of 1.9 kPa (39 lbf ft−2), where
pb is the bottom surface pressure. This, in turn, would imply a wing loading of about
this same magnitude.
As a rough guide, provided the wing leading edge is highly swept, and neither the

wing loading nor the surface pressure exceeds ca. 2 kPa (40 lbf ft−2), we see that the
heating intensity is likely to be ‘moderate’ at a Mach number of about 7, and ‘high’
for all Mach numbers above 10.
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Table 1. Edge materials and the reference solution for T0

k L Θ Λ T0

material sg (W m−1 K−1) (mm) (K) (cm) L/Λ T0/Θ (K)

graphite 2.3 43 109 879 24 0.46 1.713 1505
niobium 8.34 71 58 795 53 0.109 1.805 1430
tungsten 18.95 108 38 731 103 0.037 1.944 1420
copper 8.46 339 57 582 643 0.0089 2.222 1290

We can carry this a little further by noting that when the heat intensity is high,
T0 is almost proportional to the reference temperature Θ. Equation (3.2) then shows
that the nose temperature varies as H2/5, so, in the single-sided heating condition
at high Mach number, equations (3.5)–(3.7) show that T0 varies as (pb cosφ)1/5. A
doubling of wing loading to 4 kPa (80 lbf ft−2), or a reduction of sweepback from
75◦ to 60◦, can increase the nose temperature from what we have called a high
value of 1600 K (2880 ◦R) by 15%, to 1840 K (3000 ◦R). This assumes that the semi-
angle δ perpendicular to the edge remains unaltered. If edge angle in the streamwise
direction (δs, say) were to stay the same, then, since δ ≈ δs secφ, Θ and, consequently,
T0, vary approximately as (pb cos2 φ)1/5, and the effect of sweepback is even more
pronounced. The result also assumes that we cannot improve on the results of the
reference solution, but (as we shall now endeavour to show) we can indeed do so.

4. The design of the conducting material

While we shall describe the design of the conducting leading edge in general terms,
it is useful nonetheless to refer the general results to a practical example. For this
purpose we shall use the designed re-entry vehicle SLEEC22 (Nonweiler, this issue)
to provide relevant figures. It has the following features.

(i) Its wing loading is only 680 Pa (141
4 lbf ft

−2).

(ii) Its wing leading edges are swept back at an angle of 72◦.

(iii) The semi-angle of the leading edge is 8.7◦ in a streamwise plane, and δ = 20.6◦
(0.36 rad) in the plane normal to the edges.

(iv) The descent of the vehicle is planned so that, at all Mach numbers of
10 and above, the top-surface heat transfer should be negligible, and the
heating rate, Qb

√
s, to its bottom surface should not exceed 50 kWm−3/2

(28 700 Btu h−1 ft−3/2 or 6200 lbf s−1 ft−1/2). This corresponds to a radiation
equilibrium temperature on the bottom surface (derived from (3.3) by replac-
ing Σ with εb = 0.85) of 1010 K at a streamwise distance of 1 m from the
leading edge (2100 ◦R at 1 ft streamwise from the edge). From (3.5) and (3.7),
it follows that the value of H is not more than 28 kWm−3/2 at Mach num-
bers of 10 and above, and becomes progressively smaller as the Mach number
decreases below 10.

Four possible materials were considered for the conduction-assisted cooling of its
wing leading edges: each restricted to a mass of 10 kg m−1 (6.7 lb ft−1) along the
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Figure 7. Effect on T0/Θ of a linear downstream taper of the conducting material, leaving
its cross-sectional area (i.e. mass) unchanged. (a) Top- and bottom-surface heat transfer and
emissivity assumed equal. (b) Heat transfer only to the bottom surface and L/Λ = 0.005. (c)
Top side open or transparent.

edge. These and their relevant characteristics are given in table 1, assuming (as in
the reference solution) that the sum of the surface emissivities is Σ = 1.7.
There does not seem much to choose between the use of tungsten and niobium as

a means of limiting the nose temperature, but the temperature seems too high for
the use of copper (which melts at 1357 K).

(a) The use of taper

The material nearest the nose is more effective in controlling nose temperature
than that downstream. As a consequence, the triangular cross-section of the reference
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solution is not an efficient use of a fixed mass of the material, since it continually
increases in thickness downstream. Rather, it is better to taper the material off as
the distance from the nose increases. This is illustrated for a symmetric heating
(and so also temperature) distribution in figure 7a. The resulting elongation of the
conducting region will be seen to have little effect if the length L of the triangular
cross-section is comparable with Λ. However, as the value of L/Λ decreases, the
possible gain from tapering becomes more marked.
Note that there is no heat transfer across the internal gap between the two tapered

portions in this symmetric condition. Thus, the internal surfaces, or the entire gap,
could be insulated, without affecting the estimate of nose temperature. However,
when the heat transfer is assumed to be restricted to the bottom surface only, then,
as illustrated in figure 7b, taper is not necessarily an advantage. If the interior of the
tapered section is insulated along its interior surface (QR in the diagram), or within
the entire gap between top and bottom surfaces QRS, then the external radiation
is halved and taper serves only to increase the nose temperature, as shown. On the
other hand, if the top surface QS is open, or transparent, so that the wing leading
edge might resemble the sketch in figure 7c, then two-sided radiation is available
(as assumed in the reference solution), and the reduction is precisely the same as
that shown for symmetric heating in figure 7a. There is an intermediate condition
where the top surface QS is solid, and if its surface emissivity is 0.85 (like all other
surfaces), then, considering the radiation balance across the gap QRS, we find that
the net emissivity of the surface QR is reduced by a factor of 2.15 (to 0.395). Thus,
the sum of the emissivities on the two sides of the tapered portion is reduced, in
effect, from the value of 1.7 (assumed in evaluating Θ and Λ) to 1.245, and, as
figure 7b shows, the advantage of taper is largely lost.
For the re-entry vehicle described at the start of this section, the heat input at

high Mach number is single sided. Provided the top surface is open or transparent,
then, from table 1, we find that the introduction of straight taper reduces the nose
temperatures of niobium, tungsten and copper by a maximum of 2%, 3.8% and
6.9%, respectively, consistent with the decreasing values of L/Λ for each of these
materials (as given in table 1). The corresponding values of T0 are 1405 K (2530 ◦R)
for niobium, 1365 K (2460 ◦R) for tungsten and 1205 K (2170 ◦R) for copper.
Measured by the effect on T0, there are more efficient forms of taper than the

linear taper shown in figure 7. The optimum shape is not known, but it seems likely
to entail a more gradual reduction in material thickness downstream, merging as it
were into a thin ‘skin’, with a consequent increase in the total length.

(b) The use of a less dense material

The rate of conduction of heat downstream depends on the product of the material
conductivity and its local thickness. Taper reduces the downstream thickness, but
much the same effect can be obtained by using a material of lower density down-
stream. There would, of course, only be advantage in this if it does not have too low
a conductivity.
For instance, figure 8 illustrates the effect of using a second material of 0.6 times the

conductivity but 0.3 times the density (like graphite behind a niobium tip). Provided
thermal contact is maintained between the top and bottom surfaces over the entire
length, the reduction is the same irrespective of whether the heating is symmetric. In
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the example of the re-entry vehicle already cited, the maximum reduction in T0 for
graphite with a niobium tip is 2%, almost the same as that which can be achieved by
linear taper. However, for graphite backing a tungsten tip, the maximum reduction
in this example is 4.4%, rather more than for taper, with T0 decreased from 1420 K to
1360 K (2445 ◦R). Copper is best backed with beryllium and this gives a maximum
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reduction in T0 of almost 5% from 1290 K to 1230 K (2215 ◦R), which is less than can
be achieved by taper at the small L/Λ involved. Clearly, the effect must depend on
the materials used. However, as in the example of figure 9, whatever the materials,
there is a limit to the reduction that can be achieved as L/Λ is reduced.
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It is generally beneficial to combine the use of a low density material with linear, or
any other shape of, taper. This is illustrated in figure 10a for a condition of one-sided
heat transfer. It will be seen that there is an interaction between the two measures,
so that the resultant drop in T0 is not simply the sum of the component reductions.
In the example of the re-entry vehicle SLEEC22, if we assume, as before, that the
top surface is open or transparent, as in figure 7c, then the maximum reduction in
T0 from this combination is increased still further to 2.8% for niobium and 5.4%
for tungsten. The corresponding values of T0 are reduced to 1395 K (2510 ◦R) and
1345 K (2420 ◦R). However, for copper, as indicated in figure 10b, it happens that
the maximum reduction due to taper with or without the addition of a beryllium
tailpiece is about the same, and we cannot better the value of 1205 K (2170 ◦R).
These are, at best, quite modest reductions, although certainly worthwhile. They

back up the case for regarding the reference solution itself as being widely represen-
tative. However, the largest effect of all is achieved by rounding the leading edge,
and this we look at in the next section.

5. The effect of rounding the nose

Clearly, a nose shape that is rounded, or otherwise blunted, must be better able than
one that is sharp to conduct a given amount of heat downstream, away from this
‘hot-spot’. Moreover, it is well known that the effect of rounding on the boundary
layer is to spread out the peak in the rate of heating at the nose. On the other hand,
this may also serve to reduce the temperature gradient that drives heat conduction,
so that it cannot be assumed that rounding is entirely beneficial.
Almost all of the results that we shall quote in what follows relate to a (two-dimen-

sional) wedge with a circularly rounded nose. This choice of geometry is merely a
matter of convenience, as it is not clear what an optimum shape might be. The
application of conducting-plate theory in this context is described in the appendix.
For it to retain good accuracy, experience suggests that the nose radius should not
exceed approximately one-tenth of the length of the material. However, there is no
rigorous justification of this limit.
This is just one of several simplifications that seem unavoidable if we are to avoid

a morass of detail. Over a ‘sharp-edged’ wedge, we have been willing to accept that
the variation of heat input is known and that merely a constant of proportion (H)
distinguishes one condition from another. But the difficulty in discussing the effect of
rounding the nose is that the variation of heat transfer over the surface is dependent
on wedge angle, sweepback, Mach number, and, possibly, Reynolds number as well.
All that we attempt to offer here is some broad indication of the magnitude of the
effect.

(a) Boundary-layer heat transfer

The variation of the rate of aerodynamic heating over a circularly rounded nose of
the wedge is illustrated in figure 11. The calculations assume the hypersonic approx-
imation for the flow of a perfect gas.† It will be seen that over the curved portion of

† The air is treated as a perfect gas with γ = 1.4. The surface is supposed to be cold, with its pressure
given by the Newton formula. The boundary-layer flow is assumed laminar, with the air viscosity varying
as T 0.65, and its Prandtl number equal to 0.7.
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the surface, the heating rate varies more or less linearly with axial distance x, and
continues to fall, though less rapidly, along the flat portion of the wedge downstream
of the shoulder. The wedge angle determines where that break occurs, but does not
influence the heating upstream, over the curved surface.
Figure 12 shows that far downstream, where the effect of the nose curvature has
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become negligible, the round-nosed wedge generally has a higher heat transfer than
one with a sharp nose, even though the surface slope and pressure are the same for
both. However, the difference in the rate of heating is not large and reverses in sign
if the wedge angle is large. The figure relates to the limit of infinite Mach number,
and the difference also tends to reduce as the Mach number becomes smaller. This
is because it is an effect of the entropy rise through the incident shock. In thin
boundary-layer theory (upon which all our calculations are based), the entropy at
the outside of the boundary layer is taken to be the same as that at the surface in
inviscid flow. This is identical with the entropy at the stagnation point for the round-
nosed wedge, whereas for a sharp-edged wedge, it is that immediately downstream
of the plane shock.
Another way of viewing this difference is to suppose that the very thin entropy

layer produced by the ‘almost-sharp’ wedge is swallowed by the boundary layer,
whereas for the round-nosed wedge, the entropy layer lies outside the boundary
layer. Figure 13 shows a typical vorticity distribution for inviscid flow near a round-
nosed cylinder. Since the entropy gradient normal to the streamlines is proportional
to the vorticity, clearly the bulk of the change in entropy takes place away from the
surface. Moreover, it occurs over a region whose thickness is large compared with
the nose radius.
In practice, it is not only difficult to predict which assumption to apply, but it is

possible, of course, that neither truly represents the downstream condition. However,
in what follows, we shall assume that the entropy at the edge of the boundary layer
equals the stagnation point value. This generally avoids underestimating the heat
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transfer. More to the point, we do not have to guess how the entropy at the outside
of the boundary layer changes from the stagnation point value, which doubtless
applies over the nose, to the plane shock value that we assume to exist downstream.

(b) Effect on heat transfer

As in all of the other results we have quoted up to now, it is relevant for our
purposes to compare the round-nosed wedge with a sharp-edged one having the
same edge sweepback and wedge angle, and the same mass or cross-sectional area
(A, say). If we assume that the wedge is cut-off flat at its downstream end, then
A = L2 tan δ for the sharp-edged wedge. Although the expression for A is less simple
for the rounded wedge and depends on its nose radius r, it follows that if it has
the same cross-sectional area, then a value of L/r implies a position on both sharp
and round-nosed wedges. The larger the value, the further either wedge extends
downstream, relative to the radius r.
On this basis, we can compare the hypersonic heating rates derived from the

simplified calculations used in drawing up figures 11 and 12, and the results are
shown in figure 14. The solid lines indicate the ratio of the total heating rates. These
are found by integrating along both round- and sharp-edged surfaces, from the nose
to the downstream end. On the other hand, the dotted lines refer to the ratio of
the local rates of heating at the downstream end. These local rates determine the
radiation equilibrium temperature immediately downstream of the wedge, and the
fourth root of their ratio is the ratio of these temperatures.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2218 T. R. F. Nonweiler

0.6

0.2
ra

di
us

/l
en

gt
h 

of
 r

ou
nd

ed
 w

ed
ge

0
0 0.1

    shaded 
 areas 
 equal

0.2

50

30

20

= 10°δ

/r

r

L

L

0.3

0.4

Figure 15. Radius-to-length ratio of rounded- and sharp-edged wedges of equal cross-sectional
area as determined by the semi-wedge angle δ in the plane normal to the edge.

The value of either ratio is zero at the nose, since the sharp-edged wedge has an
infinite rate of heat transfer at the nose. However, it exceeds unity for small L/r,
implying that the heating on the rounded wedge becomes comparatively high at some
position close to the stagnation point on its curved nose. It reaches a maximum at
about L/r = 1 (corresponding roughly to an angle δ round the curved nose), and
then falls away rather slowly to an asymptotic value, generally above unity. This
corresponds to the higher heating of a round-nosed section far downstream, as shown
in figure 12 (and discussed in the previous section).
The only exception to this general pattern is provided by the thicker swept wedge.

The quoted streamwise semi-angles δs of 10◦ and 20◦ of figure 14 become† angles
of 27◦ and 47◦ normal to the edge of a wing swept back through 70◦. As figure 12
confirms, the wedge angle of 47◦ is large enough to lower the asymptotic heating rate
on the round-edged wedge below that of the sharp wedge.

(c) Effect on nose temperature

We have already seen (in § 3) that, in the ‘infinite conductivity’ solution corre-
sponding to L/Λ → 0, the surface temperature is constant. Its value is such that the
heat radiated from the wedge exactly balances that input. It follows from figure 14
that the provision of a nose radius cannot be effective in reducing the surface temper-
ature if L/Λ is too small. (The only exception to this is likely to arise for semi-wedge
angles δ exceeding 45◦ or so.) On the other hand, it is also clear from figure 14 that

† Upon assuming δ = arctan(tan δs sec φ).
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Figure 16. Change in T0/Θ due to a circularly rounded nose on a wedge of streamwise semi-apex
angle δ with its edge swept back by angle φ, keeping the same cross-section of conducting
material. Unbroken lines, symmetrical heating; broken lines, one-sided heating. (a) δ = 10◦,
φ = 0◦; (b) δ = 20◦, φ = 0◦. (c) δs = 10◦, φ = 70◦; (d) δs = 20◦, φ = 70◦.

any benefit is likely to disappear as r/L tends to 1 from below. Thus, there is likely
to be a minimum temperature reached for some r/L < 1, even if the loss of accuracy
in conducting-plate theory did not limit us to this range. Note that L refers here
(as elsewhere) to the length of the sharp-edged wedge of the same cross-sectional
area. As shown in figure 15, the length of the rounded wedge is less than L, and its
radius-to-length ratio is, therefore, larger.
All of these trends are observable from figure 16a–d. By comparison with a sharp-

nosed section, one with a rounded nose is effective in reducing the nose temperature
only for L/Λ > 0.01. (As already anticipated, the only exception to this is provided by
the extreme case of high sweep and large wedge angle shown in figure 16d.) There is
a maximum reduction for some value of r/L in the interval (0.01,1). However, as r/L
is decreased, it will be seen that the temperature ratio (of rounded to sharp-edged
wedges) does not tend to unity, as one would have expected. This is because of the
non-uniform convergence to the limit introduced by our assumptions (as discussed
in § 5 a). However, no doubt it will do so in reality, even though we cannot model
the process.
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Figure 17. Proportionate change in T0/Θ due to a circularly rounded nose on a flat-topped wedge
of streamwise semi-apex angle δs = 10◦ with its edge swept back by angle φ = 70◦, keeping the
same cross-sectional area of conducting material. (Heating on underside only.)

The solid lines on all parts of figure 16 relate to symmetrical heating of the top
and bottom wedge surfaces. If the wedge is at such a high angle of attack that the
heating is only to one side, then the reductions indicated by the broken lines apply.
These are lower because there is still heating over the full curved region of the nose,
and this becomes progressively more important as r/L tends to unity.
One-sided heating is almost certain to apply in hypersonic lifting re-entry, and the

only way we can regain the advantage of the symmetrical arrangement is by halving
the circular nose, as illustrated in figure 17. The curved surface here occupies less
than a quadrant.† With this modification, it is seen by comparing figure 17 with 16d
that, as could be expected, the reduction in T0 is close to those on a symmetrical
wedge with double the semi-wedge angle, δ.
It is found that the use of taper or the introduction of lighter materials remains an

advantage on round-nosed sections, though generally rather less so than on sharp-
edged wedges. Since the effect of rounding is most marked at larger values of L/Λ,
there is in any event a greater advantage in using graphite as the conducting material,
because its low density allows a larger L and its low conductivity reduces Λ. For
instance, in the example provided by SLEEC22, the niobium nose backed by graphite
yields a leading edge temperature of 1400 K (2520 ◦R) on a sharp-edged wedge of
10 kg m−1 mass. Since its L/Λ is 0.109, if it is given a ‘half-rounded’ nose with
r/L = 0.1, its T0 might be lowered by 15% to 1190 K (2140 ◦R), as indicated by
figure 17 (which does not, however, apply precisely to this example). On the other
hand, table 1 lists L/Λ as 0.46 for graphite and the nose temperature of a sharp-edged
graphite wedge as 1505 K (2710 ◦R). Figure 17 suggests that its nose temperature can

† It is arguable that what we sketch as a sharp corner at the edge of the top surface should in fact
be rounded, although with a much smaller radius than that of the lower quadrant.
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be reduced by 171
2% with r/L = 0.1, down to 1240 K (2230 ◦R). Half the difference

between the nose temperature of these two materials has now disappeared.
For the record, in its published form, Nonweiler (this issue, SLEEC22) quotes the

mass of the leading edge conducting material as halved to 5 kg m−1, and that a
sharp-edged niobium wedge backed by graphite would reach T0 = 1435 K (2585 ◦R).
It was assumed that rounding could provide a further 5% reduction in T0 to 1363 K
(2453 ◦R). Figure 17 confirms that this is clearly well within the bounds of possibility.

6. Designing the wing apex

In considering the heating of a swept leading edge, we have so far treated conduction
as a two-dimensional process. If the wing apex is pointed in plan view, then this
assumption must break down close to that point. However, suppose that the leading
edge of the wing, looked at in plan view, is curved so gradually that its radius of
curvature is large compared with the conduction length. Then there is no reason
why conductivity should not remain a locally two-dimensional effect, up to and
including the now-rounded apex. However, the provision of conducting material will
need to vary spanwise, along the curved leading edge, as the local sweepback changes.
Certainly, the wing apex itself will always present the most difficult condition to deal
with.
This is perhaps most easily illustrated by again using the re-entry vehicle SLEEC22

(Nonweiler, this issue) as an example. At its (rounded) apex, the heating intensity
is held to within H = 50 kWm−3/2, and the now streamwise semi-wedge angle is
0.15 rad. If niobium is used, the conducting length Λ is now only 7.5 cm (3 in) and
the reference temperature is 1175 K. No heavy mass is needed to provide a value of
L/Λ of unity or more, and a sharp wedge could therefore have a nose temperature of
2000 K (3600 ◦R). Figure 16a, b suggests that a ‘half-rounded’ nose with r/L = 0.1
might be a little above 1670 K (3000 ◦R). More accurate calculations, including real-
gas effects and use of a graphite backing to the niobium, put this figure nearer 1750 K
(3100 ◦R).
However, the problem is not so much the value of T0 at the apex as the extensive

region of the surface that is unacceptably hot downstream of the conducting region.
The region being protected needs to be lengthened well beyond L = Λ, although we
do not need to install conducting material for this purpose. However, there is merit
in doing so, because we might use a redundantly large value of (say) L = 3Λ at
hypersonic speeds, merely to be able also to cool the apex at lower Mach numbers
(where Λ is larger, because H is lower). The same considerations apply to a swept-
wing leading edge, but apex temperatures are higher and, generally, remain a problem
down to quite low Mach numbers.
In extreme conditions, it might be necessary to cool the apex by circulating a

coolant. In this condition, the use of conducting materials can continue to play an
important role. However, it would take us too far afield to follow this suggestion any
further here, though it might find application in scramjet design and the RBCC (see,
for example, figure 3, p. 2323).

My grateful thanks are due to Leo Townend of APECS Ltd. On many occasions and over many
years, his unfailing, though not uncritical, support of this line of research has rekindled my
enthusiasm, even when its embers have become rather lifeless.
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Appendix A. The application of conducting-plate theory

We consider a thin two-dimensional body and we describe an x-axis of an orthogonal
Cartesian coordinate system within it. We suppose that the y-axis meets the top and
bottom surface of the body at y = yt(x) > yb(x) for all x ∈ (0, L), and we write the
body thickness as t(x) = yt(x)− yb(x). Usually, we shall take yt(0) = yb(0) = t(0) =
0, and we assume that t(x) � L for all 0 � x � L. The surface slopes are taken as

βt(x) = arctan(dyt/dx),

and, similarly,

βb(x) = arctan(dyb/dx).

The lengths of the body surface intercepted between two ordinates at distance x and
x+ dx from the origin, where dx is infinitesimal, are secβt dx and secβb dx.
We suppose next that in the plane x = const., the body is subjected to steady rates

of heat input Qt(x), Qb(x), and loses heat by radiation at the steady rate Rt(x),
Rb(x), per unit surface area of its top and bottom surfaces, respectively. Then, if
η(x) is the conduction of heat in the x-direction within the body across an ordinate
at distance x from the nose, the equation of steady heat conduction states that, as
dx → 0,

η(x+ dx)− η(x) = dη(x) = [Qt(x)− Rt(x)] secβt dx+ [Qb(x)− Rb(x)] secβb dx.
(A 1)

We now assume that the distribution of material within the body is such that we
can (approximately) treat its temperature T as being independent of y. Then,

Rt(x) = εtσT
4(x),

and, similarly,

Rb(x) = εbσT
4(x),

where εt and εb are surface emissivities, and σ is the Stefan–Boltzmann constant.
Further, the heat conduction is η(x) = −k(x)t(x) dT/dx, where k(x) is the integral
mean of the material conductivity with respect to y from yb(x) to yt(x). It will be
realized that our assumptions impose constraints on the variation of conductivity in
the y-direction. In particular, the existence of insulation or a gap (i.e. a region of
small or zero k) could result in a discrete, and possibly large, change in temperature
from one side to the other.
The basic equation of conducting-plate theory is, therefore:

d[k(x)t(x) dT/dx]/dx = [εtσT
4(x)− Qt(x)] secβt + [εbσT

4(x)− Qb(x)] secβb.
(A 2)

We solve this equation subject to the boundary conditions η(0) = η(L) = 0. The
former of these conditions ensures that the temperature remains bounded at the nose,
and the latter imposes the condition that there is no transfer of heat downstream.
For instance, as applied to the heating of a symmetric homogeneous wedge of

semi-angle δ by a boundary layer, we take

Qt(x) = Qb(x) = 1
2H/

√
r,
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where r = x sec δ is the radial distance along the surface. It is in fact easier to replace
x by r in (A 2), which then becomes

2k tan δ
d(r dT/dr)

dr
= ΣσT 4 − H√

r
, (A 3)

where Σ = εt + εb. However, since β is here everywhere small (and equal to ±δ)
because of our assumption that the surface is thin, we would be justified in recasting
this equation as

2kδ
d(xdT/dx)

dx
= ΣσT 4 − H√

x
. (A 4)

In this form, we can also relax the requirement of symmetry and assume that Qt(x)+
Qb(x) is equal to H/

√
x. This is the equation governing the ‘reference solution’

(3.1) of the main text. Using the definitions of the characteristic temperature Θ and
conducting length Λ given in (3.2) of the main text, we find, on placing z2 = x/Λ
and τ = T/Θ, that (A 4) becomes, quite simply,

d(z dτ/dz)
dz

= 2(zτ4 − 1). (A 5)

The condition that η(0) = 0 is satisfied here by taking τ ′(0) = −2, and the condition
that η(L) is zero, becomes τ ′(z) = 0 at z =

√
(L/Λ). This is probably most easily

solved by the shooting method, guessing an initial τ at z = 0, and iterating to
satisfy the downstream condition on τ ′. The author prefers to express the second-
order equation as a system of two first-order equations in (non-dimensional) variables
for T and η (rather than T and dT/dz). If there is a discontinuous change in k(x),
then η will be continuous, but not dT/dz.
Other problems are formulated similarly as special cases of (A2). If, as in the

example of a thin wedge, the surface slope is everywhere small, we can omit the
factors of cosβ. Either in that event or when the body is symmetric so that βt = βb,
we can group the emissivities and rates of heating together, as

Σ = εt + εb and Q = Qt(x) +Qb(x).

For instance, in the (symmetric) heating of a circularly rounded nose, (A 2) becomes

2
d(k dT/dθ)

dθ
= r0(ΣσT 4 − Q), (A 6)

for 0 � θ � π/2 − δ, where θ is the angular coordinate round the nose. At θ = 0,
the boundary condition that η = 2k dT/dθ is 0 simply ensures that dT/dθ = 0, as
is consistent with symmetry. On the surface of the wedge downstream, and with the
assumption that δ is small, it is convenient to place t(x) = 2ys +2(z2 − z2

s )Λδ where
z2
s = xs/Λ and xs = r0(1−sin δ) and ys = r0 cos δ are the coordinates of the shoulder.
Treating δ as small, we can place xs, ys ≈ r0. Then, we continue the solution as

d{[r0/(Λδ) + z2 − z2
s ]z

−1 dτ/dz}
dz

= 2z(τ4 − Λ1/2Q/H), (A 7)

for r0 � Λz2 � L, where Λ1/2Q → H/z as z → ∞. The boundary conditions to be
met are that η is continuous at the shoulder and zero at x = L. In this way, the
solution merges smoothly with that of a thin pointed wedge as r0 → 0.
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It is arguable whether conducting-plate theory is correctly applicable to a blunt or
rounded shape (Nonweiler 1952, 1956). The justification rests largely on a restriction
to relatively small values of nose radius, which, as we see from (A6), implies that
the change in temperature over a rounded nose is relatively small, although it needs
to be noted that Q increases in proportion to 1/

√
r0. However, as illustrated in

figure 11b, it usually happens that Q drops over the curved region of the nose roughly
in proportion to x (which varies as cos θ). This in turn means that the variation of
T , as determined by a solution of (A 6), also has a dominant component varying as
−x, so that (fortuitously perhaps) T may be quite closely a function of x, as the
theory assumes.

Notation

A cross-sectional area of conducting material
En radiation equilibrium temperature at a normal distance n from the nose
Er radiation equilibrium temperature at a normal distance r from the nose
H heating intensity, assumed constant, being the total

heat input to both surfaces of the wedge within the
normal distance n from the nose, divided by 2

√
n

Hs heating intensity, assumed constant, being the total
heat input to both surfaces of the wedge within the
streamwise distance s from the nose, divided by 2

√
s

L length of wedge in the x-direction normal to its edge
Q rate of heat transfer from the boundary layer
T absolute temperature
T0 absolute temperature at the nose
Vc (nominal) circling velocity
V∞ free-stream speed

k material conductivity
m mass of conducting material per unit length along edge
pe surface pressure (at edge of boundary layer)
r = n, radial normal distance from nose,

and nose radius (from § 5)
s distance from edge in streamwise direction
sg specific gravity of the conducting material
x distance along the x-axis described within

the wedge and normal to its edge

Λ conducting length, defined by (3.2)
Θ = EΛ, reference temperature, defined by (3.2)

Σ = εb + εt, the sum of the surface emissivities
δ semi-wedge angle of wedge in plane normal to edge
δs semi-wedge angle of wedge in streamwise direction
ε surface emissivity
φ local sweepback of edge of wedge
ρ material density
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σ the Stefan–Boltzmann constant, 5.6697× 10−8 Wm−2 K−4

(1.7121× 10−9 Btu h−1 ft−2 ◦R−4).

Additionally, the subscripts ‘b’ and ‘t’ applied to Q, ε and p denote values on the
bottom and top wedge surfaces, respectively.
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